Abstract
"Objective: CCR5, a G protein-coupled receptor (GPCR), is used by most HIV strains as a coreceptor. In this study, we looked for other GPCRs able to modify HIV-1 infection.
Design: We analyzed the effects of one GPCR coexpressed with CCR5, EBI2, on HIV-1 replicative cycle.
Methods: We identified GPCRs expressed in primary CD4+CCR5+ T cells by multi-RT-qPCR. We studied GPCR dimerization by FRET technology. Cell lines expressing EBI2 were established by transduction with HIV vectors. HIV-1 entry was quantified with virions harboring β-lactamase fused to the viral protein vpr, early and late HIV-1 transcriptions by qPCR, NFkB nuclear activation by immunofluorescence and transfection, and viral production by measuring p24 concentration in culture supernatant by ELISA.
Results: We showed that EBI2 is naturally expressed in primary CD4+CCR5+ T cells, and that CCR5 and EBI2 heterodimerize. We observed that this coexpression reduced viral entry by 50%. The amount of HIV reverse transcripts was similar in cells expressing or not EBI2. Finally, the presence of EBI2 induced the translocation of NFkB and activated HIV-1 genome expression. Globally, the result was a drastic HIV-1 R5, but not X4, overproduction in EBI2-transduced cells.
Conclusions: EBI2 expression in CD4+CCR5+ cells boosts HIV-1 R5 productive infection. As the natural ligand for EBI2 is present in blood and lymphoid tissues, the constant EBI2 activation might increase HIV replication in CD4+ T cells. It might be of interest to test the effect of EBI2 antagonists on the residual viral production persisting in patients aviremic under treatment."