top of page

GPCR News 

Post: Blog2_Post

Bursicon receptor gene HLGR2 as a potential RNA interference target for control of the fall ...

Bursicon receptor gene HLGR2 as a potential RNA interference target for control of the fall webworm Hyphantria cunea

Background: Insect G protein-coupled receptors (GPCRs) have been identified as a new generation of attractive targets for RNA interference (RNAi)-based pest control. A functional study of the leucine-rich repeat-containing (LGR2) gene in Hyphantria cunea (HLGR2) was performed to examine whether it can be used in the molecular control of this notorious pest.

Results: The complementary DNA (cDNA) sequence and deduced amino acids of HLGR2 were obtained and analyzed in the present study. HLGR2 is a typical GPCR and shows high structural and sequence similarity with other insect LGR2 proteins. The spatiotemporal expression profiles of HLGR2 showed that HLGR2 was highly expressed at the egg stage and tissues of head and silk gland. After RNAi of HLGR2, distinct phenotypes were observed when HLGR2 expression was suppressed, indicating that HLGR2 is essential in pupation and eclosion. HLGR2 RNAi led to a low pupation rate (45.00%), body malformation, abnormal wing expansion, failed cuticle melanization (63.33%), and high mortality rate (48.33%). Furthermore, we identified eight genes that are regulated by HLGR2. The expression of these eight genes was induced by the HLGR2 signaling pathway and correlated well with cuticle sclerotization. Unlike LGR2 in other insect species, HLGR2 was found to play a crucial role in the control of H. cunea during ecdysis and postecdysial stages.

Conclusion: HLGR2 is essential for the growth and development and wing expansion and maturation in H. cunea, suggesting HLGR2 is a promising candidate for application in RNAi-based control of this notorious agriculture-forest pest.


Recent Posts

See All