Search Results
Results found for "Dr. Ben Myers"
- How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. open book Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR | Dr. GPCR Ecosystem
Home → Flash News → How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. open book Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR Published on June 9, 2025 Category GPCR Weekly News How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR Previous Next Recent Articles
