Search Results
Results found for "Dr. Thomas P. Sakmar"
- Did you know that certain ergot derivatives can produce wash-resistant signalling through the 5-HT2B receptor persisting for many hours without losing potency or efficacy? By using signalling assays, radioligand binding assay, and microscopy, Gaidarov et al. suggested that this phenomenon results from persistently/irreversibly internalised signalling receptor complexes. Check out the latest GPCR news in the Ecosystem today! You’ll need to register but don’t worry, it’s Free! ➡️ https://www.ecosystem.drgpcr.com/receptor-activation-and-signaling/mechanisms-of-constitutive-and-agonist-induced-5-ht2b-internalization%2C-persistent-endosomal-signaling-and-paradoxical-regulation-of-agonist-pharmacology #gpcr#drgpcr | Dr. GPCR Ecosystem
Home → Flash News → Did you know that certain ergot derivatives can produce wash-resistant signalling through the 5-HT2B receptor persisting for many hours without losing potency or efficacy? By using signalling assays, radioligand binding assay, and microscopy, Gaidarov et al. suggested that this phenomenon results from persistently/irreversibly internalised signalling receptor complexes. Check out the latest GPCR news in the Ecosystem today! You’ll need to register but don’t worry, it’s Free! ➡️ https://www.ecosystem.drgpcr.com/receptor-activation-and-signaling/mechanisms-of-constitutive-and-agonist-induced-5-ht2b-internalization%2C-persistent-endosomal-signaling-and-paradoxical-regulation-of-agonist-pharmacology #gpcr#drgpcr Published on May 19, 2025 Category GPCR Weekly News Did you know that certain ergot derivatives can produce wash-resistant signalling through the 5-HT2B receptor persisting for many hours without losing potency or efficacy? By using signalling assays, radioligand binding assay, and microscopy, Gaidarov et al. suggested that this phenomenon results from persistently/irreversibly internalised signalling receptor complexes. Check out the latest GPCR news in the Ecosystem today! You’ll need to register but don’t worry, it’s Free! ➡️ https://www.ecosystem.drgpcr.com/receptor-activation-and-signaling/mechanisms-of-constitutive-and-agonist-induced-5-ht2b-internalization%2C-persistent-endosomal-signaling-and-paradoxical-regulation-of-agonist-pharmacology #gpcr#drgpcr Previous Next Recent Articles
- GPCR activation is well-known to be a multi-step process. However, current molecular structures only capture the fully activated complex. Check out this paper to see how scientists combine different techniques to elucidate the intermediate GPCR-mini-Gαsβγ complex at 2.6 Å. Did you know that we work hard to bring you the most recent GPCR News, weekly? Catch up today in the Ecosystem using your free site membership! ➡️https://www.ecosystem.drgpcr.com/structural-and-molecular-insights-into-gpcr-function/structure-and-function-of-a-near-fully-activated-intermediate-gpcr-g%CE%B1%CE%B2%CE%B3-complex #gpcr #drgpcr | Dr. GPCR Ecosystem
Home → Flash News → GPCR activation is well-known to be a multi-step process. However, current molecular structures only capture the fully activated complex. Check out this paper to see how scientists combine different techniques to elucidate the intermediate GPCR-mini-Gαsβγ complex at 2.6 Å. Did you know that we work hard to bring you the most recent GPCR News, weekly? Catch up today in the Ecosystem using your free site membership! ➡️https://www.ecosystem.drgpcr.com/structural-and-molecular-insights-into-gpcr-function/structure-and-function-of-a-near-fully-activated-intermediate-gpcr-g%CE%B1%CE%B2%CE%B3-complex #gpcr #drgpcr Published on February 11, 2025 Category GPCR Weekly News GPCR activation is well-known to be a multi-step process. However, current molecular structures only capture the fully activated complex. Check out this paper to see how scientists combine different techniques to elucidate the intermediate GPCR-mini-Gαsβγ complex at 2.6 Å. Did you know that we work hard to bring you the most recent GPCR News, weekly? Catch up today in the Ecosystem using your free site membership! ➡️ https:// www.ecosystem.drgpcr.com/structural-and-molecular-insights-into-gpcr-function/structure-and-function-of-a-near-fully-activated-intermediate-gpcr-g%CE%B1%CE%B2%CE%B3-complex #gpcr #drgpcr Previous Next Recent Articles
- Think βCGRP is just αCGRP’s understudy? Think again. New research shows that βCGRP triggers distinct receptor signaling profiles across the CGRP receptor family, challenging the long-held assumption of redundancy. 🔬 A closer look reveals differences in G protein coupling, second messenger production, and receptor trafficking. 📊 This could reshape how we understand CGRP-related physiology—and how we target it in drug design. 🧠 Pain, inflammation, metabolism: the implications go far beyond signaling bias. 🔗 Read the full paper in Biochemistry: Unique Biased Agonism Profile of βCGRP on CGRP Family Receptors #GPCR #CGRP #DrugDiscovery #Pharmacology #SignalTransduction #Neuropeptides | Dr. GPCR Ecosystem
Home → Flash News → Think βCGRP is just αCGRP’s understudy? Think again. New research shows that βCGRP triggers distinct receptor signaling profiles across the CGRP receptor family, challenging the long-held assumption of redundancy. 🔬 A closer look reveals differences in G protein coupling, second messenger production, and receptor trafficking. 📊 This could reshape how we understand CGRP-related physiology—and how we target it in drug design. 🧠 Pain, inflammation, metabolism: the implications go far beyond signaling bias. 🔗 Read the full paper in Biochemistry: Unique Biased Agonism Profile of βCGRP on CGRP Family Receptors #GPCR #CGRP #DrugDiscovery #Pharmacology #SignalTransduction #Neuropeptides Published on June 16, 2025 Category GPCR Weekly News Think βCGRP is just αCGRP’s understudy? Think again. New research shows that βCGRP triggers distinct receptor signaling profiles across the CGRP receptor family, challenging the long-held assumption of redundancy. 🔬 A closer look reveals differences in G protein coupling, second messenger production, and receptor trafficking. 📊 This could reshape how we understand CGRP-related physiology—and how we target it in drug design. 🧠 Pain, inflammation, metabolism: the implications go far beyond signaling bias. 🔗 Read the full paper in Biochemistry : Unique Biased Agonism Profile of βCGRP on CGRP Family Receptors #GPCR #CGRP #DrugDiscovery #Pharmacology #SignalTransduction #Neuropeptides Previous Next Recent Articles
- How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. open book Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR | Dr. GPCR Ecosystem
Home → Flash News → How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. open book Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR Published on June 9, 2025 Category GPCR Weekly News How do GRK-specific phosphorylation barcodes influence β-arrestin binding to GPCRs? New cryo-EM structures from Chen et al. (Nature, 2025) reveal that β-arrestin1 and β-arrestin2 form distinct complexes with ACKR3 depending on whether it's phosphorylated by GRK2 or GRK5, shaping arrestin conformation, complex stability, and engagement mode. Surprisingly, arrestin’s finger loop didn’t dive into the receptor core. Instead, it latched onto the micelle surface, breaking canonical expectations. Also, β-arrestin2 lacks a membrane anchor, making it more dynamic — a potential clue to its functional specialization. These findings underscore how barcode location + arrestin isoform = unique signaling outcomes. Read the full study: Inside Out: Mapping GPCRs from Membrane Codes to Market Moves #GPCRs #Arrestin #ACKR3 #GRKs #CryoEM #StructuralBiology #SignalingBias #Phosphorylation #DrGPCR Previous Next Recent Articles
