Search Results
Results found for empty search
- Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors
November 2022 "Despite the growing number of G protein-coupled receptor (GPCR) structures, only 39 structures have been cocrystallized with allosteric inhibitors. These structures have been studied by protein mapping using the FTMap server, which determines the clustering of small organic probe molecules distributed on the protein surface. The method has found druggable sites overlapping with the cocrystallized allosteric ligands in 21 GPCR structures. Mapping of Alphafold2 generated models of these proteins confirms that the same sites can be identified without the presence of bound ligands. We then mapped the 394 GPCR X-ray structures available at the time of the analysis (September 2020). Results show that for each of the 21 structures with bound ligands there exist many other GPCRs that have a strong binding hot spot at the same location, suggesting potential allosteric sites in a large variety of GPCRs. These sites cluster at nine distinct locations, and each can be found in many different proteins. However, ligands binding at the same location generally show little or no similarity, and the amino acid residues interacting with these ligands also differ. Results confirm the possibility of specifically targeting these sites across GPCRs for allosteric modulation and help to identify the most likely binding sites among the limited number of potential locations." Read more at the source #DrGPCR #GPCR #IndustryNews Subscribe to the Dr. GPCR Newsletter HERE
- Dimerization of β2-adrenergic receptor is responsible for the constitutive activity subjected to inv
November 2022 "Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gιs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR." Read more at the source #DrGPCR #GPCR #IndustryNews Subscribe to the Dr. GPCR Newsletter HERE
- β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the...
October 2022 β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells "β-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR-β-arrestin complex. However, whether β-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and β-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations ("hanging" and "core"). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of β-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess β-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function." Read more at the source #DrGPCR #GPCR #IndustryNews Subscribe to the Dr. GPCR Newsletter
- Hear the sounds: the role of G protein-coupled receptors in the cochlea
September 2022 "Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2, and Gpr126. And A1, A2A, and CB2 activation by agonists has protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection." Read more at the source #DrGPCR #GPCR #IndustryNews Subscribe to the Dr. GPCR Newsletter
- Dimerization of β2-adrenergic receptor is responsible for the constitutive activity subjected to...
October 2022 Dimerization of β2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism "Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gιs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR." Read more at the source #DrGPCR #GPCR #IndustryNews Subscribe to the Dr. GPCR Newsletter
- GPCRs steer G i and G s selectivity via TM5-TM6 switches as revealed by structures of serotonin...
August 2022 GPCRs steer G i and G s selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors "Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors." Read more at the source #DrGPCR #GPCR #IndustryNews
- Activation of the human chemokine receptor CX3CR1 regulated by cholesterol
August 2022 "As the only member of the CX3C chemokine receptor subfamily, CX3CR1 binds to its sole endogenous ligand CX3CL1, which shows notable potential as a therapeutic target in atherosclerosis, cancer, and neuropathy. However, the drug development of CX3CR1 is hampered partially by the lack of structural information. Here, we present two cryo-electron microscopy structures of CX3CR1-Gi1 complexes in ligand-free and CX3CL1-bound states at 2.8- and 3.4-Ă resolution, respectively. Together with functional data, the structures reveal the key factors that govern the recognition of CX3CL1 by both CX3CR1 and US28. A much smaller conformational change of helix VI upon activation than previously solved class A GPCR-Gi complex structures is observed in CX3CR1, which may correlate with three cholesterol molecules that play essential roles in conformation stabilization and signaling transduction. Thus, our data deepen the understanding of cholesterol modulation in GPCR (G protein-coupled receptor) signaling and provide insights into the diversity of G protein coupling." Read more at the source #DrGPCR #GPCR #IndustryNews
- Effect Delta-9-tetrahydrocannabinol and cannabidiol on milk proteins and lipid levels in HC11 cells
September 2022 "Pregnant and lactating women have been discouraged from using cannabis by Health Canada. However, the increasing rate of cannabis use among pregnant women has presented an urgent need to investigate its physiological effects during the perinatal period. During pregnancy, the mammary gland (MG) undergoes remodeling, which involves alveolar differentiation of mammary epithelial cells (MECs), which is essential for breast milk production and secretion. Limited evidence has been reported on the impact of cannabis or its components, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on MG development or MEC differentiation. In this study, we investigated the effects of THC and CBD on the differentiation of MECs by assessing changes in cellular viability, lipid accumulation, and gene and protein expression of major milk protein and lipid synthesizing markers. using the HC11 cells as a model. We hypothesized that THC and CBD will negatively impact the synthesis of milk proteins and lipids, as well as lipid markers in HC11 cells. Our results demonstrated that THC and CBD reduced cellular viability at concentrations above 30ÎźM and 20ÎźM, respectively. Relative to control, 10ÎźM THC and 10ÎźM CBD reduced mRNA levels of milk proteins (CSN2 and WAP), lipid synthesizing and glucose transport markers (GLUT 1, HK2, FASN, FABP4, PLIN2 and LPL), as well as whey acidic protein and lipid levels. In addition, co-treatment of a CB2 antagonist with THC, and a CB2 agonist with CBD, reversed the impact of THC and CBD on the mRNA levels of key markers, respectively. In conclusion, 10ÎźM THC and CBD altered the differentiation of HC11 cells, in part via the CB2 receptor." Read more at the source #DrGPCR #GPCR #IndustryNews
- High hedgehog signaling is transduced by a multikinase-dependent switch controlling the...
October 2022 High hedgehog signaling is transduced by a multikinase-dependent switch controlling the apico-basal distribution of the GPCR smoothened "The oncogenic G-protein-coupled receptor (GPCR) Smoothened (SMO) is a key transducer of the hedgehog (HH) morphogen, which plays an essential role in the patterning of epithelial structures. Here, we examine how HH controls SMO subcellular localization and activity in a polarized epithelium using the Drosophila wing imaginal disc as a model. We provide evidence that HH promotes the stabilization of SMO by switching its fate after endocytosis toward recycling. This effect involves the sequential and additive action of protein kinase A, casein kinase I, and the Fused (FU) kinase. Moreover, in the presence of very high levels of HH, the second effect of FU leads to the local enrichment of SMO in the most basal domain of the cell membrane. Together, these results link the morphogenetic effects of HH to the apico-basal distribution of SMO and provide a novel mechanism for the regulation of a GPCR." Read more at the source #DrGPCR #GPCR #IndustryNews
- Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex
October 2022 "Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with β-arrestin1. It reveals an atypical position of β-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/β-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the β-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes." Read more at the source #DrGPCR #GPCR #IndustryNews
- Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias...
October 2022 Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of Gi/o signaling "Aims: Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function." Read more at the source #DrGPCR #GPCR #IndustryNews
- Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures
October 2022 "G protein-coupled receptors (GPCRs) are important drug targets characterized by a canonical seven transmembrane (TM) helix architecture. Recent advances in X-ray crystallography and cryo-EM have resulted in a wealth of GPCR structures that have been used in drug design and formed the basis for mechanistic activation hypotheses. Here, ensemble refinement (ER) of crystallographic structures is applied to explore the impact of binding of agonists and antagonist/inverse agonists to selected structures of cannabinoid receptor 1 (CB1R), β2 adrenergic receptor (β2 AR) and A2A adenosine receptor (A2A AR). " Read more at the source #DrGPCR #GPCR #IndustryNews
- Increased Anxiety-like Behaviors in Adgra1-/- Male But Not Female Mice are Attributable to...
October 2022 Increased Anxiety-like Behaviors in Adgra1-/- Male But Not Female Mice are Attributable to Elevated Neuron Dendrite Density, Upregulated PSD95 Expression, and Abnormal Activation of the PI3K/AKT/GSK-3β and MEK/ERK Pathways "Adhesion G protein-coupled receptor A1 (ADGRA1) belongs to the G protein-coupled receptor (GPCR) family, and its physiological function remains largely unknown. We found that Adgra1 is highly and exclusively expressed in the brain, suggesting that Adgra1 may be involved in the regulation of neurological behaviors including anxiety, depression, learning and memory. To this end, we comprehensively analyzed the potential role of ADGRA1 in the neurobehaviors of mice by comparing Adgra1-/- and their wild-type (wt) littermates. We found that Adgra1-/- male but not female mice exhibited elevated anxiety levels in the open field, elevated plus maze, and light-dark box tests, with normal depression levels in the tail-suspension and forced-swim tests, and comparable learning and memory abilities in the Morris water maze, Y maze, fear condition, and step-down avoidance tests. Further studies showed that ADGRA1 deficiency resulted in higher dendritic branching complexity and spine density as evidenced by elevated expression levels of SYN and PSD95 in amygdalae of male mice. Finally, we found that PI3K/AKT/GSK-3β and MEK/ERK in amygdalae of Adgra1-deficient male mice were aberrantly activated when compared to wt male mice. Together, our findings reveal an important suppressive role of ADGRA1 in anxiety control and synaptic function by regulating the PI3K/AKT/GSK-3β and MEK/ERK pathways in amygdalae of male mice, implicating a potential, therapeutic application in novel anti-anxiety drug development." Read more at the source #DrGPCR #GPCR #IndustryNews
- Structural view of G protein-coupled receptor signaling in the retinal rod outer segment
October 2022 "Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina." Read more at the source #DrGPCR #GPCR #IndustryNews
- Case Report of a Juvenile Patient with Autism Spectrum Disorder with a Novel Combination of Copy...
October 2022 Case Report of a Juvenile Patient with Autism Spectrum Disorder with a Novel Combination of Copy Number Variants in ADGRL3 (LPHN3) and Two Pseudogenes "We report the finding of two copy number variants (CNVs) in a 12-year-old boy presenting both with autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Clinical features included aggressive behavior, mood instability, suicidal statements, repetitive and restrictive behavior, sensitivity to noise, learning problems and dyslexia, though no intellectual disability was present. Using array-based comparative genomic hybridization (array-CGH), we identified two CNVs, both triplex duplications of 324 kb on 3p26.3, and 284 kb on 4q13.1, respectively. One of the CNVs is located on chromosome 4q13.1 in the region of the gene encoding for adhesion G protein-coupled receptor L3 (ADGRL3, former name: latrophilin-3, LPHN3), the other on chromosome 3p26.3 in the region of the two pseudogenes AC090043.1 and RPL23AP39. The patient described in the present study showed increased symptoms under methylphenidate treatment but responded positively to 3 mg per day of the atypical neuroleptic drug aripiprazole. To our knowledge, this is the first report of a CNV in the ADGRL3 gene and its first association with ASD in humans." Read more at the source #DrGPCR #GPCR #IndustryNews
- Discovery and In Vivo Evaluation of ACT-660602: A Potent and Selective Antagonist of the Chemokine..
October 2022 Discovery and In Vivo Evaluation of ACT-660602: A Potent and Selective Antagonist of the Chemokine Receptor CXCR3 for Autoimmune Diseases "The chemokine receptor CXCR3 is a seven-transmembrane G-protein-coupled receptor (GPCR) involved in various pathologies, in particular autoimmune diseases. It is activated by the three chemokine ligands CXCL9, CXCL10, and CXCL11 and enables the recruitment of immune cell subsets leading to damage of inflamed tissues. Starting from a high-throughput screening hit, we describe the iterative optimization of a chemical series culminating in the discovery of the selective CXCR3 antagonist ACT-660602 (9j). The careful structural modifications during the lead optimization phase led to a compound with high biological potency in inhibiting cell migration together with improvements of the metabolic stability and hERG issue. In a LPS-induced lung inflammation model in mice, ACT-660602 led to significantly reduced recruitment of the CXCR3+ CD8+ T cell in the bronchoalveolar lavage compartment when administered orally at a dose of 30 mg/kg." Read more at the source #DrGPCR #GPCR #IndustryNews
- Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or sy
October 2022 Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or systemic lipolysis in rat "Introduction: Recurrent hypoglycemia (RH) impairs secretion of counterregulatory hormones. Whether and how RH affects responses within metabolically important peripheral organs to counterregulatory hormones are poorly understood. Objective: To study the effects of RH on metabolic pathways associated with glucose counterregulation within liver, white adipose tissue and skeletal muscle. Methods: Using a widely adopted rodent model of 3-day recurrent hypoglycemia, we first checked expression of counterregulatory hormone G-protein coupled receptors (GPCRs), their inhibitory regulators and downstream enzymes catalyzing glycogen metabolism, gluconeogenesis and lipolysis by qPCR and western blot. Then, we examined epinephrine-induced phosphorylation of PKA substrates to validate adrenergic sensitivity in each organ. Next, we measured hepatic and skeletal glycogen content, degree of breakdown by epinephrine and abundance of phosphorylated glycogen phosphorylase under hypoglycemia and that of phosphorylated glycogen synthase during recovery to evaluate glycogen turnover. Further, we performed pyruvate and lactate tolerance tests to assess gluconeogenesis. Additionally, we measured circulating FFA and glycerol to check lipolysis. The abovementioned studies were repeated in streptozotocin-induced diabetic rat model. Finally, we conducted epinephrine tolerance test to investigate systemic glycemic excursions to counterregulatory hormones. Saline-injected rats served as controls." Read more at the source #DrGPCR #GPCR #IndustryNews
- Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals
October 2022 "Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes." Read more at the source #DrGPCR #GPCR #IndustryNews
- Nanobodies as Probes and Modulators of Cardiovascular G Protein-Coupled Receptors
October 2022 "Understanding the activation of G protein-coupled receptors (GPCRs) is of paramount importance to the field of cardiovascular medicine due to the critical physiological roles of these receptors and their prominence as drug targets. Although many cardiovascular GPCRs have been extensively studied as model receptors for decades, new complexities in their regulation continue to emerge. As a result, there is an ongoing need to develop novel approaches to monitor and to modulate GPCR activation. In less than a decade, nanobodies, or recombinant single-domain antibody fragments from camelids, have become indispensable tools for interrogating GPCRs both in purified systems and in living cells. Nanobodies have gained traction rapidly due to their biochemical tractability and their ability to recognize defined states of native proteins. Here, we review how nanobodies have been adopted to elucidate the structure, pharmacology, and signaling of cardiovascular GPCRs, resolving long-standing mysteries and revealing unexpected mechanisms. We also discuss how advancing technologies to discover nanobodies with tailored specificities may expand the impact of these tools for both basic science and therapeutic applications." Read more at the source #DrGPCR #GPCR #IndustryNews
- Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling
October 2022 "Adhesion G protein-coupled receptors (aGPCRs) are keys of many physiological events and attractive targets for various diseases. aGPCRs are also known to be capable of self-activation via an autoproteolysis process that removes the inhibitory GAIN domain on the extracellular side of receptor and releases a stalk peptide to bind and activate the transmembrane side of receptor. However, the detailed mechanism of aGPCR activation remains elusive. Here, we report the cryo-electron microscopy structures of GPR110 (ADGRF1), a member of aGPCR, in complex with Gq, Gs, Gi, G12 and G13. The structures reveal distinctive ligand engaging model and activation conformations of GPR110. The structures also unveil the rarely explored GPCR/G12 and GPCR/G13 engagements. A comparison of Gq, Gs, Gi, G12 and G13 engagements with GPR110 reveals details of G-protein engagement, including a dividing point at the far end of the alpha helix 5 (ÎąH5) of GÎą subunit that separates Gq/Gs engagements from Gi/G12/G13 engagements. This is also where Gq/Gs bind the receptor through both hydrophobic and polar interaction, while Gi/G12/G13 engage receptor mainly through hydrophobic interaction. We further provide physiological evidence of GPR110 activation via stalk peptide. Taken together, our study fills the missing information of GPCR/G-protein engagement and provides a framework for understanding aGPCR activation and GPR110 signaling." Read more at the source #DrGPCR #GPCR #IndustryNews
- Endosomal parathyroid hormone receptor signaling
October 2022 "The canonical model for G protein-coupled receptors (GPCRs) activation assumes that stimulation of heterotrimeric G protein signaling upon ligand binding occurs solely at the cell surface and that duration of the stimulation is transient to prevent overstimulation. In this model, GPCR signaling is turned-off by receptor phosphorylation via GPCR kinases (GRKs) and subsequent recruitment of β-arrestins, resulting in receptor internalization into endosomes. Internalized receptors can then recycle back to the cell surface or be trafficked to lysosomes for degradation. However, over the last decade, this model has been extended by discovering that some internalized GPCRs continue to signal via G proteins from endosomes. This is the case for the parathyroid hormone (PTH) type 1 receptor (PTHR), which engages on sustained cAMP signaling from endosomes upon PTH stimulation. Accumulative evidence shows that the location of signaling has an impact on the physiological effects of GPCR signaling. This mini-review discusses recent insights into the mechanisms of PTHR endosomal signaling and its physiological impact." Read more at the source #DrGPCR #GPCR #IndustryNews
- Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases
October 2022 "CXCR1 and CXCR2 chemokine receptors, mainly activated by interleukin 8 (IL-8 or CXCL8), are expressed in a variety of cells including, leukocytes, fibroblasts, endothelial cells, and smooth muscle cells. Numerous intracellular mediators are activated by these G protein-coupled receptors based on several factors, including the nature of the ligand, its concentration, and the binding sites with the receptor, levels of the receptor, cell type, and stimulatory environment. Much focus is currently being directed towards CXCR1/2 inhibitors, as these receptors primarily induce the chemotaxis of leukocytes, especially neutrophils, during inflammation, a key process in cardiovascular disease (CVD) progression. CXCR1/2 inhibitors show beneficial effects in various animal models of CVD. These effects include reducing the atherosclerotic plaque area, improving the serum lipid profile, attenuation of the damage following ischemia-reperfusion, the regulation of blood pressure, and the restriction of cardiac remodeling. Based on these encouraging results, testing CXCR1/2 inhibitors in clinical trials could be of a great importance to limit the inflammatory complications associated with CVDs." Read more at the source #DrGPCR #GPCR #IndustryNews
- Allosteric modulation of GPCRs: From structural insights to in silico drug discovery
October 2022 "G protein-coupled receptors (GPCRs) play critical roles in human physiology and are one of the prime targets for marketed drugs. While traditional drug discovery programs have focused on the development of ligands targeting the binding site of endogenous ligands (orthosteric site), allosteric modulators offer new avenues for the regulation of GPCR function with potential therapeutic benefits. Recent advances in the structure determination of GPCRs bound to different types of allosteric modulators have led to the identification of multiple allosteric sites and significantly enhanced our understanding of how allosteric ligands interact with receptors. These structural insights, together with the plethora of GPCR structures available today, will facilitate structure-based discovery and development of allosteric modulators as novel therapeutic candidates. In this review, we provide a systematic analysis of the currently available GPCR structures in complex with small-molecule allosteric ligands in terms of the location of allosteric pockets, receptor-ligand interactions, and the chemical features of the allosteric modulators. In addition, we summarize current strategies for the identification of allosteric sites as well as ligand-based and structure-based drug discovery and design." Read more at the source #DrGPCR #GPCR #IndustryNews
- Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric...
October 2022 Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR Review 34 "Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII." Read more at the source #DrGPCR #GPCR #IndustryNews
- Identification of A2BAR as a potential target in colorectal cancer using novel fluorescent GPCR...
October 2022 Identification of A2BAR as a potential target in colorectal cancer using novel fluorescent GPCR ligands "G-protein coupled receptors (GPCRs) have been largely targeted in a wide range of diseases, but few therapies have been directed against GPCRs in the field of cancer, partly because of the lack of effective target identification strategies. Here, using colorectal cancer (CRC) as a model, we explored the gene expression of a panel of GPCRs in tumor and stromal cells, identifying specific gene sets defining each cellular compartment. We selected the adenosine receptor 2B (A2BAR), specifically expressed in cancer cell lines compared with stromal cells, to explore the use of fluorescent ligands that can be used for target visualization. Fluorescent probes allowed semi-quantitative receptor mapping in living cells and validated the specific expression of A2BAR in CRC cell lines. As well, fluorescent ligands were effective at monitoring real-time A2BAR receptor labeling using live-imaging modalities, and displayed high efficiency when used to label complex 3D cellular systems such as tumor spheroids. Finally, we validated A2BAR as a potential pharmacological tool in CRC, using selective antagonists, finding a reduction in tumor cell proliferation. This proof-of-concept study suggests the use of fluorescent ligands for GPCR characterization through imaging, and as possible new tools used for target validation in drug screening methodologies." Read more at the source #DrGPCR #GPCR #IndustryNews
- GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for...
October 2022 GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A2A Adenosine Receptor "Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Ă resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds." Read more at the source #DrGPCR #GPCR #IndustryNews
- Endogenous ligand recognition and structural transition of a human PTH receptor
October 2022 "Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Ă . A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP" Read more at the source #DrGPCR #GPCR #IndustryNews
- Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface
October 2022 Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface from Molecular Dynamics Simulations and Quantum Chemical Calculations "Allosteric modulators are called promising candidates in G protein-coupled receptor (GPCR) drug development by displaying subtype selectivity and more specific receptor modulation. Among the allosteric sites known to date, cavities at the receptor-lipid interface represent an uncharacteristic binding location that raises many questions about the ligand interactions and stability, the binding site structure, and how all of these are affected by lipid molecules. In this work, we analyze interactions in the allosteric sites of the PAR2, C5aR1, and GCGR receptors in three lipid compositions using molecular dynamics simulations. In addition, we performed quantum chemical calculations involving the symmetry-adapted perturbation theory (SAPT) and the natural population analysis to quantify the strength of intermolecular interactions. We show that besides classical hydrogen bonds, weak polar interactions such as O-HC, O-Br, and long-range electrostatics with the backbone amides contribute to the stability of allosteric modulators at the receptor-lipid interface. The allosteric cavities are detectable in various membrane compositions. The availability of polar atoms for interactions in such cavities can be assessed by water molecules from simulations. Although ligand-lipid interactions are weak, lipid tails play a role in ligand binding pose stability and the size of allosteric cavities. We discuss physicochemical aspects of ligand binding at the receptor-lipid interface and suggest a compound library enriched by weak donor groups for ligand search in such sites." Read more at the source #DrGPCR #GPCR #IndustryNews
- ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the...
October 2022 ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP "Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD." Read more at the source #DrGPCR #GPCR #IndustryNews
- Adenosine receptor signalling in Alzheimer's disease
October 2022 "Alzheimer's disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer's disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer's disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response." Read more at the source #DrGPCR #GPCR #IndustryNews
