top of page

GPCR News 

Post: Blog2_Post

Coincident Regulation of PLCβ Signaling by Gq-Coupled and μOpioid Receptors Opposes Opioid- Mediated

Updated: Nov 7, 2022

October 2022


Coincident Regulation of PLCβ Signaling by Gq-Coupled and μOpioid Receptors Opposes Opioid- Mediated Antinociception


"Pain management is a significant problem worldwide. The current frontline approach for pain-management is the use of opioid analgesics. The primary analgesic target of opioids is the μ-opioid receptor (MOR). Deletion of phospholipase Cβ3 (PLCβ3), or selective inhibition of Gβγ regulation of PLCβ3, enhances the potency of the antinociceptive effects of morphine suggesting a novel strategy for achieving opioid sparing effects. Here we investigated a potential mechanism for regulation of PLC signaling downstream of MOR in HEK293 cells and found that MOR alone could not stimulate PLC, but rather required a coincident signal from a Gq coupled receptor. Knockout of PLCβ3, or pharmacological inhibition of its upstream regulators, Gβγ or Gq, ex vivo in periaqueductal gray (PAG) slices increased the potency of the selective MOR agonist DAMGO in inhibiting presynaptic GABA release. Finally, inhibition of Gq-GPCR coupling in mice enhanced the antinociceptive effects of morphine. These data support a model where Gq and Gβγ-dependent signaling cooperatively regulate PLC activation to decrease MOR-dependent antinociceptive potency. Ultimately this could lead to identification of new non-MOR targets that would allow for lower dose utilization of opioid analgesics. "



Recent Posts

See All
bottom of page