top of page

Search Results

Results found for empty search

  • Identification and functional characterization of the sulfakinin and sulfakinin receptor in the...

    September 2022 Identification and functional characterization of the sulfakinin and sulfakinin receptor in the Chinese white pine beetle Dendroctonus armandi "The sulfakinin (SK) is an important signal molecule. As a neuromodulator, it mediates a variety of behavioral processes and physiological functions in invertebrates through the interaction with G-protein-coupled receptors (GPCRs). However, there is no report on the functional role of SK in the Chinese white pine beetle, Dendroctonus armandi. We have cloned and characterized SK and SKR genes in the D. armandi and carried out bioinformatics predictions on the basis of the deduced amino acid sequences, which are very similar to those from Dendroctonus ponderosa. The expression levels of the two genes were different between male and female adults, and there were significant changes in different developmental stages, tissues, and between starvation and following re-feeding states. Additionally, RNA-interference (RNAi) using double-stranded RNA to knock down SK and SKR reduced the transcription levels of the target genes and increased their body weight. In parallel, injection of SK caused a significant reduction in body weight and increase in mortality of D. armandi and also led to an increase in trehalose and a decrease in glycogen and free fatty acid. The results show that the SK signal pathway plays a positive and significant role in feeding regulation and provides a potential molecular target for the control of this pest." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Sweet taste receptor agonists attenuate macrophage IL‐1β expression and eosinophilic inflammation...

    September 2022 Sweet taste receptor agonists attenuate macrophage IL‐1β expression and eosinophilic inflammation linked to autophagy deficiency in myeloid cells "Background Eosinophilic inflammation is a hallmark of refractory chronic rhinosinusitis (CRS) and considered a major therapeutic target. Autophagy deficiency in myeloid cells plays a causal role in eosinophilic CRS (ECRS) via macrophage IL‐1β overproduction, thereby suggesting autophagy regulation as a potential therapeutic modality. Trehalose is a disaccharide sugar with known pro‐autophagy activity and effective in alleviating diverse inflammatory diseases. We sought to investigate the therapeutic potential of autophagy‐enhancing agent, trehalose, or related sugar compounds, and the underlying mechanism focusing on macrophage IL‐1β production in ECRS pathogenesis. Methods We investigated the therapeutic effects of trehalose and saccharin on macrophage IL‐1β production and eosinophilia in the mouse model of ECRS with myeloid cell‐specific autophagy‐related gene 7 (Atg7) deletion. The mechanisms underlying their anti‐inflammatory effects were assessed using specific inhibitor, genetic knockdown or knockout, and overexpression of cognate receptors." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Dynamic recognition of naloxone, morphine and endomorphin1 in the same pocket of Âľ-opioid receptors

    September 2022 "Morphine, the most widely used analgesic, relieves severe pain by activating the Ο-opioid receptor (MOR), whereas naloxone, with only slight structural changes compared to morphine, exhibits inhibitory effect, and is used to treat opioid abuse. The mechanism by which the MOR distinguishes between the two is unclear. Molecular dynamics (MD) simulations on a 1-Οs time scale and metadynamics-enhanced conformational sampling are used here to determine the different interactions of these two ligands with MOR: morphine adjusted its pose by continuously flipping deeper into the pocket, whereas naloxone failed to penetrate deeper because its allyl group conflicts with several residues of MOR. The endogenous peptide ligand endomorphin-1 (EM-1) underwent almost no significant conformational changes during the MD simulations. To validate these processes, we employed GIRK4S143T, a MOR-activated Gβγ-protein effector, in combination with mutagenesis and electrophysiological recordings. We verified the role of some key residues in the dynamic recognition of naloxone and morphine and identified the key residue I322, which leads to differential recognition of morphine and naloxone while assisting EM-1 in activating MOR. Reducing the side chain size of I322 (MORI322A) transformed naloxone from an inhibitor directly into an agonist of MOR, and I322A also significantly attenuated the potency of MOR on EM-1, confirming that binding deep in the pocket is critical for the agonistic effect of MOR. This finding reveals a dynamic mechanism for the response of MOR to different ligands and provides a basis for the discovery of new ligands for MOR at the atomic level." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Functional Characterization of the Venus Flytrap Domain of the Human TAS1R2 Sweet Taste Receptor

    September 2022 "The human sweet taste receptor is a heterodimeric receptor composed of two distinct G-protein-coupled receptors (GPCRs), TAS1R2 and TAS1R3. The TAS1R2 and TAS1R3 subunits are members of a small family of class C GPCRs whose members share the same architecture, comprising a Venus Flytrap (VFT) module linked to the seven transmembrane domains (TMDs) by a short cysteine-rich region (CRR). The VFT module of TAS1R2 contains the primary binding site for most of the sweet-tasting compounds, including natural sugars and artificial and natural sweeteners. However, cellular assays, molecular docking and site-directed mutagenesis studies have revealed that the VFT, CRR and TMD of TAS1R3 interact with some sweeteners, including the sweet-tasting protein brazzein. The aim of this study was to better understand the contribution of TAS1R2-VFT in the binding of sweet stimuli. To achieve this, we heterologously expressed human TAS1R2-VFT (hTAS1R2-VFT) in Escherichia coli. Circular dichroism spectroscopic studies revealed that hTAS1R2-VFT was properly folded with evidence of secondary structures. Using size-exclusion chromatography coupled with light scattering, we found that hTAS1R2-VFT behaves as a monomer. Ligand binding quantified by intrinsic tryptophan fluorescence showed that hTAS1R2-VFT is capable of binding sweet stimuli with Kd values, in agreement with physiological detection. Furthermore, we investigated whether the impact of point mutations, already shown to have deleterious effects on cellular assays, could impact the ability of hTAS1R2-VFT to bind sweet ligands. As expected, the ligand affinities of hTAS1R2-VFT were drastically reduced through the introduction of single amino acid substitutions (D278A and E382A) known to abolish the response of the full-length TAS1R2/TAS1R3 receptor. This study demonstrates the feasibility of producing milligram quantities of hTAS1R2-VFT to further characterize the mechanism of binding interaction and perform structural studies." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Combined docking and machine learning identify key molecular determinants of ligand pharmacological

    September 2022 "G protein‐coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket. We hypothesized that there is a common set of receptor interactions made by ligands of diverse structures that mediate their action and that among a large dataset of different ligands, the functionally important interactions will be over‐represented. We computationally docked ~2700 known β2AR ligands to multiple β2AR structures, generating ca 75 000 docking poses and predicted all atomic interactions between the receptor and the ligand. We used machine learning (ML) techniques to identify specific interactions that correlate with the agonist or antagonist activity of these ligands. We demonstrate with the application of ML methods that it is possible to identify the key interactions associated with agonism or antagonism of ligands. The most representative interactions for agonist ligands involve K972.68×67, F194ECL2, S2035.42×43, S2045.43×44, S2075.46×641, H2966.58×58, and K3057.32×31. Meanwhile, the antagonist ligands made interactions with W2866.48×48 and Y3167.43×42, both residues considered to be important in GPCR activation. The interpretation of ML analysis in human understandable form allowed us to construct an exquisitely detailed structure‐activity relationship that identifies small changes to the ligands that invert their pharmacological activity and thus helps to guide the drug discovery process. This approach can be readily applied to any drug target." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota..

    September 2022 Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation "Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases

    September 2022 "Glutamate is the primary excitatory neurotransmitter in the brain and plays critical roles in all aspects of neuronal function. Disruption of normal glutamate transmission has been implicated in a variety of neurodegenerative and neuropsychiatric diseases. Glutamate exerts its effect through ionotropic and metabotropic glutamate receptors (mGluRs). mGluR2 and mGluR3 are members of the Group II mGluR family and their activation leads to the inhibition of glutamate release from presynaptic nerve terminals and is also poised upstream of a myriad of signaling pathways in postsynaptic nerve terminals and neuroglia. Therefore, mGluR2 and mGluR3 have been considered as potential drug targets for the treatment of many neurological conditions and several compounds targeting these receptors have been developed. In this review, we discuss what is currently known regarding the contribution of mGluR2 and mGluR3 to the pathophysiology of some neurodegenerative and neuropsychiatric diseases including Amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's diseases, schizophrenia and depression as well as drug addiction. We then highlight the evidence supporting the use of various drugs including orthosteric and allosteric ligands acting on either mGluR2, mGluR3 or both for the management of these brain disorders." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Identification of hub genes in the subacute spinal cord injury in rats

    September 2022 "Background Spinal cord injury (SCI) is a common trauma in clinical practices. Subacute SCI is mainly characterized by neuronal apoptosis, axonal demyelination, Wallerian degeneration, axonal remodeling, and glial scar formation. It has been discovered in recent years that inflammatory responses are particularly important in subacute SCI. However, the mechanisms mediating inflammation are not completely clear. Methods The gene expression profiles of GSE20907, GSE45006, and GSE45550 were downloaded from the GEO database. The models of the three gene expression profiles were all for SCI to the thoracic segment of the rat. The differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA) were performed using R software, and functional enrichment analysis and protein–protein interaction (PPI) network were performed using Metascape. Module analysis was performed using Cytoscape. Finally, the relative mRNA expression level of central genes was verified by RT-PCR." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Endogenous ligand recognition and structural transition of a human PTH receptor

    September 2022 "Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Å. A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP." Read more at the source #DrGPCR #GPCR #IndustryNews

  • CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse

    September 2022 "T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Serotonin Receptor 5-HT2A Regulates TrkB Receptor Function in Heteroreceptor Complexes

    September 2022 "Serotonin receptor 5-HT2A and tropomyosin receptor kinase B (TrkB) strongly contribute to neuroplasticity regulation and are implicated in numerous neuronal disorders. Here, we demonstrate a physical interaction between 5-HT2A and TrkB in vitro and in vivo using co-immunoprecipitation and biophysical and biochemical approaches. Heterodimerization decreased TrkB autophosphorylation, preventing its activation with agonist 7,8-DHF, even with low 5-HT2A receptor expression. A blockade of 5-HT2A receptor with the preferential antagonist ketanserin prevented the receptor-mediated downregulation of TrkB phosphorylation without restoring the TrkB response to its agonist 7,8-DHF in vitro. In adult mice, intraperitoneal ketanserin injection increased basal TrkB phosphorylation in the frontal cortex and hippocampus, which is in accordance with our findings demonstrating the prevalence of 5-HT2A–TrkB heteroreceptor complexes in these brain regions. An expression analysis revealed strong developmental regulation of 5-HT2A and TrkB expressions in the cortex, hippocampus, and especially the striatum, demonstrating that the balance between TrkB and 5-HT2A may shift in certain brain regions during postnatal development. Our data reveal the functional role of 5-HT2A–TrkB receptor heterodimerization and suggest that the regulated expression of 5-HT2A and TrkB is a molecular mechanism for the brain-region-specific modulation of TrkB functions during development and under pathophysiological conditions." Read more at the source #DrGPCR #GPCR #IndustryNews

  • PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer

    September 2022 "G-protein-coupled receptors (GPCRs) are involved in a wide array of physiological and disease functions, yet knowledge of their role in colon cancer stem cell maintenance is still lacking. In addition, the molecular mechanisms underlying GPCR-induced post-translational signaling regulation are poorly understood. Here, we find that protease-activated receptor 4 (PAR4) unexpectedly acts as a potent oncogene, inducing β-catenin stability and transcriptional activity. Both PAR4 and PAR2 are able to drive the association of methyltransferase EZH2 with β-catenin, culminating in β-catenin methylation. This methylation on a lysine residue at the N-terminal portion of β-catenin suppresses the ubiquitination of β-catenin, thereby promoting PAR-induced β-catenin stability and transcriptional activity. Indeed, EZH2 is found to be directly correlated with high PAR4-driven tumors, and is abundantly expressed in large tumors, whereas very little to almost none is expressed in small tumors. A truncated form of β-catenin, ∆N133β-catenin, devoid of lysine, as well as serine/threonine residues, exhibits low levels of β-catenin and a markedly reduced transcriptional activity following PAR4 activation, in contrast to wt β-catenin. Our study demonstrates the importance of β-catenin lysine methylation in terms of its sustained expression and function. Taken together, we reveal that PAR-induced post-transcriptional regulation of β-catenin is centrally involved in colon cancer." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Endocannabinoid System in the Neuroendocrine Response to Lipopolysaccharide-induced Immune Challenge

    September 2022 "The endocannabinoid system plays a key role in the intersection of the nervous, endocrine, and immune systems, regulating not only their functions but also how they interplay with each other. Endogenous ligands, named endocannabinoids, are produced “on demand” to finely regulate the synthesis and secretion of hormones and neurotransmitters, as well as to regulate the production of cytokines and other proinflammatory mediators. It is well known that immune challenges, such as exposure to lipopolysaccharide, the main component of the Gram-negative bacteria cell wall, disrupt not only the hypothalamic–pituitary–adrenal axis but also affects other endocrine systems such as the hypothalamic–pituitary–gonadal axis and the release of oxytocin from the neurohypophysis. Here we explore which actors and molecular mechanisms are involved in these processes." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Isoform-and ligand-specific modulation of adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder

    September 2022 "Adhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1. The LK30/ADGRL3 complex structure revealed that the LK30 binding site on ADGRL3 overlaps with the binding site for an ADGRL3 ligand – teneurin. In cellular-adhesion assays, LK30 specifically broke the trans-cellular interaction of ADGRL3 with teneurin, but not with another ADGRL3 ligand – FLRT3. Our work provides proof of concept for the modulation of isoform- and ligand specific aGPCR functions using unique tools, and thus establishes a foundation for the development of fine-tuned aGPCR-targeted therapeutics" Read more at the source #DrGPCR #GPCR #IndustryNews

  • Arginine 125 Is an Essential Residue for the Function of MRAP2

    September 2022 "MRAP2 is a small simple transmembrane protein arranged in a double antiparallel topology on the plasma membrane. It is expressed in the paraventricular nucleus of the hypothalamus, where it interacts with various G protein-coupled receptors, such as the prokineticin receptors, and regulates energy expenditure and appetite. The aim of this work was to analyze the functional role of the specific arginine residue at position 125 of MRAP2, which affects protein conformation, dimer formation, and PKR2 binding. Results obtained with the MRAP2 mutants R125H and R125C, which are found in human patients with extreme obesity, and mouse MRAP2, in which arginine 125 is normally replaced by histidine, were compared with those obtained with human MRAP2. Understanding the mechanism by which MRAP2 regulates G protein-coupled receptors helps in elucidating the metabolic pathways involved in metabolic dysfunction and in developing new drugs as specific targets of the MRAP2-PKR2 complex." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Immunomodulatory Role of Neuropeptides in the Cornea

    September 2022 "The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems." Read more at the source #DrGPCR #GPCR #IndustryNews

  • GPR108 is required for gambogic acid inhibiting NF-ÎşB signaling in cancer

    September 2022 "GPCRs are the most potential targets for drug discovery, however, their role in oncology is underappreciated and GPCR-based anti-cancer drug is not fully investigated. Herein, we identified GPR108, a GPCR protein described in innate immune system, is a potential therapeutic target of cancer. Depletion of GPR108 dramatically inhibited the survival of various cancers. Notably, TNFÎą activation of NF-ÎşB was totally impaired after GPR108 knockout. We identified gambogic acid (GA), a natural prenylated xanthone, selectively targeting GPR108. Importantly, GA engaged with GPR108 and promoted its degradation, knockout of GPR108 remarkably blocked GA inhibition of NF-ÎşB signaling. Furthermore, in vitro and in vivo assays demonstrated that GA was dependent on GPR108 to exert anti-cancer activity. Overall, our findings supported GPR108 as a promising therapeutic target of cancer, and provided a small molecule inhibitor GA directly and selectively targeting GPR108 for cancer therapy." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of...

    September 2022 Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer "Quantitative systems pharmacology (QSP) modeling is an emerging mechanistic computational approach that couples drug pharmacokinetics/pharmacodynamics and the course of disease progression. It has begun to play important roles in drug development for complex diseases such as cancer, including triple-negative breast cancer (TNBC). The combination of the anti-PD-L1 antibody atezolizumab and nab-paclitaxel has shown clinical activity in advanced TNBC with PD-L1-positive tumor-infiltrating immune cells. As tumor-associated macrophages (TAMs) serve as major contributors to the immuno-suppressive tumor microenvironment, we incorporated the dynamics of TAMs into our previously published QSP model to investigate their impact on cancer treatment. We show that through proper calibration, the model captures the macrophage heterogeneity in the tumor microenvironment while maintaining its predictive power of the trial results at the population level. Despite its high mechanistic complexity, the modularized QSP platform can be readily reproduced, expanded for new species of interest, and applied in clinical trial simulation." Read more at the source #DrGPCR #GPCR #IndustryNews

  • GPCR kinase phosphorylation of distal C-tail sites specifies βarrestin1-mediated signaling by...

    September 2022 "G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins mediate GPCR desensitization, internalization, and signaling. The spatial pattern of GPCR phosphorylation is predicted to trigger these discrete GRK and arrestin-mediated functions. Here, we provide evidence that distal carboxyl-terminal tail (C-tail), but not proximal, phosphorylation of the chemokine receptor CXCR4 specifies βarrestin1 (βarr1)-dependent signaling. We demonstrate by pharmacologic inhibition of GRK2/3-mediated phosphorylation of the chemokine receptor CXCR4 coupled with site-directed mutagenesis and bioluminescence resonance energy transfer approaches that distal, not proximal, C-tail phosphorylation sites are required for recruitment of the adaptor protein STAM1 (signal-transducing adaptor molecule) to βarr1 and focal adhesion kinase phosphorylation but not extracellular signal-regulated kinase 1/2 phosphorylation. In addition, we show that GPCRs that have similarly positioned C-tail phosphoresidues are also able to recruit STAM1 to βarr1. However, although necessary for some GPCRs, we found that distal C-tail sites might not be sufficient to specify recruitment of STAM1 to βarr1 for other GPCRs. In conclusion, this study provides evidence that distal C-tail phosphorylation sites specify GRK-βarrestin-mediated signaling by CXCR4 and other GPCRs." Read more at the source #DrGPCR #GPCR #IndustryNews

  • The Impact of CB1 Receptor on Nuclear Receptors in Skeletal Muscle Cells

    September 2021 "Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s)." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Biased GPCR signaling by the native parathyroid hormone-related protein 1 to 141 relative to its...

    September 2022 Biased GPCR signaling by the native parathyroid hormone-related protein 1 to 141 relative to its N-terminal fragment 1 to 36 "The parathyroid hormone (PTH)-related protein (PTHrP) is indispensable for the development of mammary glands, placental calcium ion transport, tooth eruption, bone formation and bone remodeling, and causes hypercalcemia in patients with malignancy. Although mature forms of PTHrP in the body consist of splice variants of 139, 141, and 173 amino acids, our current understanding on how endogenous PTHrP transduces signals through its cognate G-protein coupled receptor (GPCR), the PTH type 1 receptor (PTHR), is largely derived from studies done with its N-terminal fragment, PTHrP1-36. Here, we demonstrate using various fluorescence imaging approaches at the single cell level to measure kinetics of (i) receptor activation, (ii) receptor signaling via Gs and Gq, and (iii) receptor internalization and recycling that the native PTHrP1-141 displays biased agonist signaling properties that are not mimicked by PTHrP1-36. Although PTHrP1-36 induces transient cAMP production, acute intracellular Ca2+ (iCa2+) release and β-arrestin recruitment mediated by ligand-PTHR interactions at the plasma membrane, PTHrP1-141 triggers sustained cAMP signaling from the plasma membrane and fails to stimulate iCa2+ release and recruit β-arrestin. Furthermore, we show that the molecular basis for biased signaling differences between PTHrP1-36 and properties of native PTHrP1-141 are caused by the stabilization of a singular PTHR conformation and PTHrP1-141 sensitivity to heparin, a sulfated glycosaminoglycan. Taken together, our results contribute to a better understanding of the biased signaling process of a native protein hormone acting in conjunction with a GPCR." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Opposite Effects of Src Family Kinases on YAP and ERK Activation in Pancreatic Cancer Cells...

    September 2022 Opposite Effects of Src Family Kinases on YAP and ERK Activation in Pancreatic Cancer Cells: Implications for Targeted Therapy "Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive disease that is expected to become the second cause of cancer fatalities during the next decade. As therapeutic options are limited, novel targets and agents for therapeutic intervention are urgently needed. Previously, we identified potent positive crosstalk between insulin/IGF-1 receptors and G protein-coupled (GPCR) signaling systems leading to mitogenic signaling in PDAC cells. Here, we show that a combination of insulin and the GPCR agonist neurotensin induced rapid activation of Src family of tyrosine kinases (SFKs) within PANC-1 cells, as shown by FAK phosphorylation at Tyr576/577 and Tyr861, sensitive biomarkers of SFK activity within intact cells and Src419 autophosphorylation. Crucially, SFKs promoted YAP nuclear localization and phosphorylation at Tyr357, as shown by using the SFK inhibitors dasatinib, saracatinib, the preferential YES1 inhibitor CH6953755, short interfering RNA (siRNA)-mediated knockdown of YES1 and transfection of epitogue-tagged YAP mutants in PANC-1 and MiaPaCa-2 cancer cells, models of the aggressive squamous subtype of PDAC. Surprisingly, our results also demonstrate that exposure to SFK inhibitors, including dasatinib or knockdown of YES and Src induces ERK over-activation in PDAC cells. Dasatinib-induced ERK activation was completely abolished by exposure to the FDA-approved MEK inhibitor trametinib. A combination of dasatinib and trametinib potently and synergistically inhibited colony formation by PDAC cells and suppessed the growth of MiaPaCa-2 cells xenografted into the flank of nude mice. The results provide rationale for considering a combination(s) of FDA-approved SFK (dasatinib) and MEK (e.g. trametinib) inhibitors in prospective clinical trials for the treatment of PDAC." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Sign Up Now!

    🌐 🤝 We want to bring closer the #GPCR community! Join the Dr. GPCR Ecosystem as a site member today for FREE and start exploring! Sign up now! ➡️ https://www.ecosystem.drgpcr.com/explore-individuals #gpcr #drgpcr

  • Dr. GPCR Summit 2022 is coming!

    The 3rd edition of the Dr. GPCR Summit is between October 10th to the 16th! 💡Trainees are invited to participate by presenting a trainee talk, a poster, or a pre-recorded talk Become a site member for FREE and submit your info! ➡️ https://www.ecosystem.drgpcr.com/dr-gpcr-summit-2022 #gpcr #drgpcr

  • Join Us Today!

    🌐Dr. GPCR Ecosystem is under construction and dozens of your colleagues are enjoying its benefits! Catch up with the latest #GPCR news, start a discussion in the forum, and much more today! Join the #GPCR movement by becoming a site member for FREE! ➡️ https://www.ecosystem.drgpcr.com/ #gpcr #drgpcr

  • Trainees, this is for you...

    🔎 Are you a trainee? Would you like to develop your presentation skills? Give a talk or present a poster at the Dr. GPCR Summit 2022. Mark your calendar for October 10th and 16th. Become a site member for FREE and submit your abstract today! ➡️ https://www.ecosystem.drgpcr.com/ #gpcr #drgpcr

  • Dr. Rosie Dawaliby Podcast!

    We're very excited to announce the next episode of the Dr. GPCR podcast! 🥁 Drum rolls, please! Our guest is the wonderful Dr. Rosie Dawaliby! Watch the full video with a Dr. GPCR Ecosystem paid membership ➡️ https://www.ecosystem.drgpcr.com/dr-gpcr-podcast/ep-84-with-rosie-dawaliby #gpcr #drgpcr

  • Join Us Now!

    🌟 We're so excited about our upcoming Dr. GPCR Summit 2022. This is a great opportunity for us to come together and talk GPCRs. Do you want to be part of it? Our Summit is FREE for all Ecosystem site members, which is also free! Join us now ➡️ https://www.ecosystem.drgpcr.com/dr-gpcr-summit-2022 #gpcr #drgpcr

  • Addex Raises $10 Million In Equity Financing

    December 2021 "Geneva, Switzerland, December 17, 2021 – Addex Therapeutics Ltd (SIX: ADXN and Nasdaq: ADXN), a clinical-stage pharmaceutical company pioneering allosteric modulation-based drug discovery and development, today announced that it has entered into a definitive agreement with Armistice Capital LLC, a healthcare-focused institutional investor, pursuant to which the Company agreed to sell 3,752,202 shares in the form of 625,367 American Depositary Shares (“ADSs”) at a gross purchase price of $6.50 per ADS, which is equivalent to CHF 1.00 per share. Each ADS represents six shares. Additionally, Addex has agreed to issue to Armistice Capital unregistered warrants to purchase up to 9,230,772 shares in the form of 1,538,462 ADSs (the “Unregistered Warrants”), as well as unregistered pre-funded warrants to purchase up to 5,478,570 shares in the form of 913,095 ADSs (the “Unregistered Pre-Funded Warrants” and together with the Unregistered Warrants, the “Warrants”) in a concurrent private placement. The Unregistered Warrants have an exercise price of $6.50 per ADS, will become exercisable in 60 days after their date of issuance and will expire six years from their date of issuance. The Unregistered Pre-Funded Warrants have been funded to the amount of $6.49 with $0.01 payable on exercise." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Learn about Dr. GPCR Ecosystem!

    💻Did you know that Dr. GPCR is much more than a podcast? Come check out the brand new Dr. GPCR Ecosystem and explore its benefits! We have #GPCR News, Learning Center, Events, and more to discover! Learn More HERE ➡️ https://www.ecosystem.drgpcr.com/learning-center #gpcr #drgpcr

bottom of page