Search Results
Results found for "Makaía M Papasergi-Scott"
- Dynamic GPCR activation revealed through time-resolved Cryo-EM
A recent breakthrough study published in Nature by Makaía M. Papasergi-Scott and colleagues has made significant progress in this area 2. Papasergi-Scott, M. M. et al. Time-resolved cryo-EM of G-protein activation by a GPCR.
- 📰 GPCR Weekly News, March 11 to 17, 2024
This week's highlight includes congrats to: Makaía M Papasergi-Scott, Peter Gmeiner, Brian K Kobilka,
- Disentangling bias between G q, GRK2, and arrestin3 recruitment to the M 3 muscarinic acetylcholine
G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses - termed bias - potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct. Read full article
- From DNA day to GPCR genomics
S., Caron, M. G., Lefkowitz, R. J., & Strader, C. D. (1986). Current opinion in structural biology, 55, 161–177. https://doi.org/10.1016/j.sbi.2019.04.007 Papasergi-Scott , M. M., Pérez-Hernández, G., Batebi, H., Gao, Y., Eskici, G., Seven, A. B., Panova, O., Hilger, D., Casiraghi, M., He, F., Maul, L., Gmeiner, P., Kobilka, B.
- A robust and Efficient FRET-Based Assay for Cannabinoid Receptor Ligands Discovery.
M.; Compton, D. R.; Martin, B. R.; Abood, M. E. , M. C.; Westphal, M. V.; Mostinski, Y.; Mach, L.; Wasinska-Kalwa, M.; Weise, M.; Hoare, B. .; Maccarrone, M.; Veprintsev, D. B.; Carreira, E. M.; Grether, U.; Nazaré, M. F.; Nicolotti, O.; Perrone, M. G.; Brea, J.; Loza, M. I.; Infantino, V.; Abate, C.; Contino, M.
- Decoding GPCR Function: The Role of Mutagenesis in Rational Drug Discovery
M., & Fields, S. (2014). Deep mutational scanning: a new style of protein science. M., Marti-Solano, M., Sandhu, M., Kobilka, B. K., Bouvier, M., & Babu, M. M. (2023). Kosar, M., Sarott, R. C., Sykes, D. A., Viray, A. E., Vitale, R. M., Tomašević, N., ... & Carreira, E. M. (2024). M., Christopoulos, A., & May, L. T. (2016).
- Targeted Drug Design through GPCR Mutagenesis: Insights from β2AR
M., Marti-Solano, M., Sandhu, M., Kobilka, B. K., Bouvier, M., & Babu, M. M. (2023). Howard, M. K., Hoppe, N., Huang, X. P., Macdonald, C. B., Mehrota, E., Grimes, P.
- An overview of the compartmentalized GPCR Signaling: Relevance and Implications
E., Healy, M. D., & Collins, B. M. (2019). , Gonçalves-Monteiro, S., Vieira-Rocha, M. M., & Lefkowitz, R. J. (2003). B., Conti, M., & von Zastrow, M. (2017). M., & Murray, F. (2018).
- Fluorescence based HTS compatible ligand binding assays for dopamine D3 receptors in baculovirus preparations and live cells
M.; Bucolo, C.; Platania, C. B. M.; Salomone, S.; Drago, F. W.; Högl, B.; Bainbridge, J.; Buchfuhrer, M.; Hadjigeorgiou, G.; Inoue, Y.; Manconi, M.; Oertel, W.; -J.; Kopanchuk, S.; Laasfeld, T.; Weinhart, M.; Schollmeyer, D.; Betschart, M. .; Keller, M. H.; Bates, M.; Zhuang, X.
- Unlocking Cell's Secrets: Spontaneous β-Arrestin-Membrane Preassociation Drives Receptor-Activation
M., Medel-Lacruz, B., Baidya, M., Makarova, M., Mistry, R., Goulding, J., Drube, J., Hoffmann, C., Owen M., Shukla, A. K., Selent, J., Hill, S. J., & Calebiro, D. (2023). M., Kawakami, K., Masureel, M., Maeda, S., Garcia, K. C., von Zastrow, M., Inoue, A., & Kobilka, B. I., & von Zastrow, M. (2001).
- The Perils and Guardrails of Modifying Signalling Proteins in Bioassays
Butlen-Ducuing F, Pétavy F, Guizzaro L, Zienowicz M, Salmonson T, Haas M, et al. Wouters OJ, McKee M, Luyten J. Schlander M, Hernandez-Villafuerte K, Cheng CY, Mestre-Ferrandiz J, Baumann M. Yamaguchi S, Kaneko M, Narukawa M. Persechino M, Hedderich JB, Kolb P, Hilger D.
- Harnessing Deep Mutational Scanning for Enhanced Drug Discovery
M. (2011). Deep mutational scanning: assessing protein function on a massive scale. M., Stephany, J. J., & Fields, S. (2014). Nature Protocols , 9 (9), 2267–2284. https://doi.org/10.1038/nprot.2014.153 Howard, M. M., Trinidad, D. D., English, J. G., Coyote-Maestas, W., & Aashish Manglik. (2024).
- Nanobodies: New Dimensions in GPCR Signaling Research
K., Odongo, S., Radwanska, M., & Magez, S. (2023). M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hübner, H., Pardon, E., Valant, C., Sexton, P. M., Christopoulos, A., Felder, C. C., Gmeiner, P., Steyaert, J., Weis, W. I., Garcia, K. M., Dukkipati, A., Feinberg, E. N., Angelini, A., Waghray, D., Dror, R. O., Ploegh, H.
- Advantages of Fluorescent Probes in GPCR Assays
References Barbazán J, Majellaro M, Martínez AL, Brea JM, Sotelo E, Abal M. Soave M, Briddon SJ, Hill SJ, Stoddart LA.
- Applications of Fluorescent Probes in Confocal Imaging of GPCRs: From Live to Fixed Cells
References Fessl T, Majellaro M, Bondar A. Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M.
- Feeder or trigger – CCR2 as a scavenger and regulator of cell migration
M. Aragay et al. 1998). Removal of G proteins by using CRISPR KO of Gαi (Gαi KO) or KO of all Gα subtypes (Gα_all KO) (M. constitutively internalize through clathrin-coated pits independently of phosphorylation and β-arrestin (M. M. Paing et al. 2022; J. L. Sapmaz et al. 2019, M. N. J. Seaman 2012).
- The sixth transmembrane region of a pheromone G-protein coupled receptor, Map3, is implicated in ...
The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors
- Transmembrane domains of GPCR dimers – a novel hot spot for drug discovery
M. et al. 2018; Manglik, A. et al. 2012). the formation of dimers and alter their function by destroying the interface between two receptors (M. structure of CB1R–5HT2AR heterodimers, preventing cognitive impairment while preserving analgesia in vivo (M.
- 📰 GPCR Weekly News, February 12 to 18, 2024
Dylan Scott Eiger, Chloe Hicks, Dr. Nayara Braga Emidio, Ross Cheloha, Laura M Wingler, et al. for their work on Nanobody-Mediated Dualsteric
- Optimizing HTRF Assays with Fluorescent Ligands: Time-Resolved Fluorescence in GPCR Research
Source: Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M. References Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M.
- Targeting GPCRs in the CNS: Advances in Drug Discovery Strategies
Biomed Pharmacother. 2018 Feb;98:222-232. doi: 10.1016/j.biopha.2017.12.056 Azam S, Haque ME, Jakaria M, ):11646-11664. doi: 10.3390/cimb46100691 Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M.
- Decoding β-Arrestins: from Structure to function
H. 2020, Casiraghi, M. et al. 2019), double electron-electron resonance (DEER) spectroscopy for high-resolution M. et al. 2019), and hydrogen-deuterium exchange (HDX) mass spectrometry for time-dependent conformational M. et al. 1999), while dual knockout is lethal (Schmid, C. L., & Bohn, L. M. 2009).
- 📰 GPCR Weekly News, December 18 to 31, 2023
Franziska M Heydenreich, Michel Bouvier, Brian Kobilka, M Madan Babu, and their team's work on Molecular
- Hop in the Time Machine with GPCR: Unraveling the Future of Research! ⦿ Nov 24 - Dec 1, 2024
David Reiner-Link , Alessandro Berghella , Brinda K Rana , G Enrico Rovati , Valerie Capra , Caroline M Abigail Alwin , Campbell Krusemark , Ezequiel Marron Fernandez de Velasco , Steven H Olson , Lauren M
- Canonical chemokine receptors as scavenging “decoys”
M, et al. 2023).
- Conjugation Strategies for Probe Development
(5) Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem.
- Radioligands vs. Fluorescent Ligands: Binding Assays
Soave M, Briddon SJ, Hill SJ, Stoddart LA.
- Navigating the Signaling Network: RTK and GPCR Crosstalk Uncovered
J., Ghassemian, M., Kufareva, I., & Ghosh, P. (2024).
- Fluorescence Polarization in GPCR Research
Miranda-Pastoriza D, Bernárdez R, Azuaje J, Prieto-Díaz R, Majellaro M, Tamhankar AV, Koenekoop L, González
- Sosei Heptares Announces Antitrust Clearance of License Agreement with Neurocrine Biosciences
(“Neurocrine Biosciences”) announced 22 November 2021, the applicable waiting period under the Hart-Scott-Rodino















