top of page

Search Results

Results found for empty search

  • Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases

    October 2022 "CXCR1 and CXCR2 chemokine receptors, mainly activated by interleukin 8 (IL-8 or CXCL8), are expressed in a variety of cells including, leukocytes, fibroblasts, endothelial cells, and smooth muscle cells. Numerous intracellular mediators are activated by these G protein-coupled receptors based on several factors, including the nature of the ligand, its concentration, and the binding sites with the receptor, levels of the receptor, cell type, and stimulatory environment. Much focus is currently being directed towards CXCR1/2 inhibitors, as these receptors primarily induce the chemotaxis of leukocytes, especially neutrophils, during inflammation, a key process in cardiovascular disease (CVD) progression. CXCR1/2 inhibitors show beneficial effects in various animal models of CVD. These effects include reducing the atherosclerotic plaque area, improving the serum lipid profile, attenuation of the damage following ischemia-reperfusion, the regulation of blood pressure, and the restriction of cardiac remodeling. Based on these encouraging results, testing CXCR1/2 inhibitors in clinical trials could be of a great importance to limit the inflammatory complications associated with CVDs." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Allosteric modulation of GPCRs: From structural insights to in silico drug discovery

    October 2022 "G protein-coupled receptors (GPCRs) play critical roles in human physiology and are one of the prime targets for marketed drugs. While traditional drug discovery programs have focused on the development of ligands targeting the binding site of endogenous ligands (orthosteric site), allosteric modulators offer new avenues for the regulation of GPCR function with potential therapeutic benefits. Recent advances in the structure determination of GPCRs bound to different types of allosteric modulators have led to the identification of multiple allosteric sites and significantly enhanced our understanding of how allosteric ligands interact with receptors. These structural insights, together with the plethora of GPCR structures available today, will facilitate structure-based discovery and development of allosteric modulators as novel therapeutic candidates. In this review, we provide a systematic analysis of the currently available GPCR structures in complex with small-molecule allosteric ligands in terms of the location of allosteric pockets, receptor-ligand interactions, and the chemical features of the allosteric modulators. In addition, we summarize current strategies for the identification of allosteric sites as well as ligand-based and structure-based drug discovery and design." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric...

    October 2022 Structural perspectives on the mechanism of signal activation, ligand selectivity and allosteric modulation in angiotensin receptors: IUPHAR Review 34 "Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Identification of A2BAR as a potential target in colorectal cancer using novel fluorescent GPCR...

    October 2022 Identification of A2BAR as a potential target in colorectal cancer using novel fluorescent GPCR ligands "G-protein coupled receptors (GPCRs) have been largely targeted in a wide range of diseases, but few therapies have been directed against GPCRs in the field of cancer, partly because of the lack of effective target identification strategies. Here, using colorectal cancer (CRC) as a model, we explored the gene expression of a panel of GPCRs in tumor and stromal cells, identifying specific gene sets defining each cellular compartment. We selected the adenosine receptor 2B (A2BAR), specifically expressed in cancer cell lines compared with stromal cells, to explore the use of fluorescent ligands that can be used for target visualization. Fluorescent probes allowed semi-quantitative receptor mapping in living cells and validated the specific expression of A2BAR in CRC cell lines. As well, fluorescent ligands were effective at monitoring real-time A2BAR receptor labeling using live-imaging modalities, and displayed high efficiency when used to label complex 3D cellular systems such as tumor spheroids. Finally, we validated A2BAR as a potential pharmacological tool in CRC, using selective antagonists, finding a reduction in tumor cell proliferation. This proof-of-concept study suggests the use of fluorescent ligands for GPCR characterization through imaging, and as possible new tools used for target validation in drug screening methodologies." Read more at the source #DrGPCR #GPCR #IndustryNews

  • GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for...

    October 2022 GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A2A Adenosine Receptor "Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Endogenous ligand recognition and structural transition of a human PTH receptor

    October 2022 "Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Å. A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP" Read more at the source #DrGPCR #GPCR #IndustryNews

  • Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface

    October 2022 Intermolecular Interactions in G Protein-Coupled Receptor Allosteric Sites at the Membrane Interface from Molecular Dynamics Simulations and Quantum Chemical Calculations "Allosteric modulators are called promising candidates in G protein-coupled receptor (GPCR) drug development by displaying subtype selectivity and more specific receptor modulation. Among the allosteric sites known to date, cavities at the receptor-lipid interface represent an uncharacteristic binding location that raises many questions about the ligand interactions and stability, the binding site structure, and how all of these are affected by lipid molecules. In this work, we analyze interactions in the allosteric sites of the PAR2, C5aR1, and GCGR receptors in three lipid compositions using molecular dynamics simulations. In addition, we performed quantum chemical calculations involving the symmetry-adapted perturbation theory (SAPT) and the natural population analysis to quantify the strength of intermolecular interactions. We show that besides classical hydrogen bonds, weak polar interactions such as O-HC, O-Br, and long-range electrostatics with the backbone amides contribute to the stability of allosteric modulators at the receptor-lipid interface. The allosteric cavities are detectable in various membrane compositions. The availability of polar atoms for interactions in such cavities can be assessed by water molecules from simulations. Although ligand-lipid interactions are weak, lipid tails play a role in ligand binding pose stability and the size of allosteric cavities. We discuss physicochemical aspects of ligand binding at the receptor-lipid interface and suggest a compound library enriched by weak donor groups for ligand search in such sites." Read more at the source #DrGPCR #GPCR #IndustryNews

  • ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the...

    October 2022 ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP "Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Adenosine receptor signalling in Alzheimer's disease

    October 2022 "Alzheimer's disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled receptors (GPCRs) are promising therapeutic targets for Alzheimer's disease. The adenosine A1 and A2A receptors are expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors preclinically can mitigate pathogenic β-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review, we provide an accessible summary of the literature on Alzheimer's disease and the therapeutic potential of A1 and A2A receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery success and enhance the therapeutic response." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Glucagon receptor-mediated regulation of gluconeogenic gene transcription is endocytosis-dependent..

    October 2022 Glucagon receptor-mediated regulation of gluconeogenic gene transcription is endocytosis-dependent in primary hepatocytes "A number of G protein-coupled receptors (GPCRs) are now thought to use endocytosis to promote cellular cAMP signaling that drives downstream transcription of cAMP-dependent genes. We tested if this is true for the glucagon receptor (GCGR), which mediates physiological regulation of hepatic glucose metabolism via cAMP signaling. We show that epitope-tagged GCGRs undergo clathrin- and dynamin-dependent endocytosis in HEK293 and Huh-7-Lunet cells after activation by glucagon within 5 min and transit via EEA1-marked endosomes shown previously to be sites of GPCR/Gs-stimulated production of cAMP. We further show that endocytosis potentiates cytoplasmic cAMP elevation produced by GCGR activation and promotes expression of phosphoenolpyruvate carboxykinase 1 (PCK1), the enzyme catalyzing the rate-limiting step in gluconeogenesis. We verify endocytosis-dependent induction of PCK1 expression by endogenous GCGRs in primary hepatocytes and show similar control of two other gluconeogenic genes (PGC1α and G6PC). Together, these results implicate the endosomal signaling paradigm in metabolic regulation by glucagon." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Keratinocyte-derived defensins activate neutrophil-specific receptors Mrgpra2a/b to prevent skin...

    October 2022 Keratinocyte-derived defensins activate neutrophil-specific receptors Mrgpra2a/b to prevent skin dysbiosis and bacterial infection "Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1β and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Mechanistic Understanding of the Palmitoylation of Go Protein in the Allosteric Regulation of...

    October 2022 Mechanistic Understanding of the Palmitoylation of Go Protein in the Allosteric Regulation of Adhesion Receptor GPR97 "Adhesion G-protein-coupled receptors (aGPCRs)-a major family of GPCRs-play critical roles in the regulation of tissue development and cancer progression. The orphan receptor GPR97, activated by glucocorticoid stress hormones, is a prototypical aGPCR. Although it has been established that the palmitoylation of the C-terminal Go protein is essential for Go's efficient engagement with the active GPR97, the detailed allosteric mechanism remains to be clarified. Hence, we performed extensive large-scale molecular dynamics (MD) simulations of the GPR97-Go complex in the presence or absence of Go palmitoylation. The conformational landscapes analyzed by Markov state models revealed that the overall conformation of GPR97 is preferred to be fully active when interacting with palmitoylated Go protein. Structural and energetic analyses indicated that the palmitoylation of Go can allosterically stabilize the critical residues in the ligand-binding pocket of GPR97 and increase the affinity of the ligand for GPR97. Furthermore, the community network analysis suggests that the palmitoylation of Go not only allosterically strengthens the internal interactions between Gαo and Gβγ, but also enhances the coupling between Go and GPR97. Our study provides mechanistic insights into the regulation of aGPCRs via post-translational modifications of the Go protein, and offers guidance for future drug design of aGPCRs." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Production of human A2AAR in lipid nanodiscs for 19F-NMR and single-molecule fluorescence...

    October 2022 "We describe production of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR) for 19F-NMR and single-molecule fluorescence (SMF) spectroscopy. We explain in detail steps shared between the two sample preparation strategies, including expression and isolation of A2AAR and assembly of A2AAR in lipid nanodiscs and procedures for incorporation of either 19F-NMR or fluorescence probes. Protocols for SMF experiments include sample setup, data acquisition, data processing, and error analysis. For complete details on the use and execution of this protocol, please refer to Wei et al. (2022) and Sušac et al. (2018)." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Activation of GPR183 by 7 α,25-Dihydroxycholesterol Induces Behavioral Hypersensitivity through...

    October 2022 Activation of GPR183 by 7 α,25-Dihydroxycholesterol Induces Behavioral Hypersensitivity through Mitogen-Activated Protein Kinase and Nuclear Factor- κ B "Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7α,25-dihydroxycholesterol (7α,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity). These effects are blocked by the selective small molecule GPR183 antagonist, SAE-14. However, the molecular mechanisms engaged downstream of GPR183 in the spinal cord are not known. Here, we show that 7α,25-OHC-induced behavioral hypersensitivity is Gα i dependent, but not β-arrestin 2-dependent. Non-biased transcriptomic analyses of dorsal-horn spinal cord (DH-SC) tissues harvested at the time of peak hypersensitivity implicate potential contributions of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). In support, we found that the development of 7α,25-OHC/GPR183-induced mechano-allodynia was associated with significant activation of MAPKs (extracellular signal-regulated kinase [ERK], p38) and redox-sensitive transcription factors (NF-κB) and increased formation of inflammatory and neuroexcitatory cytokines. SAE-14 blocked these effects and behavioral hypersensitivity. Our findings provide novel mechanistic insight into how GPR183 signaling in the spinal cord produces hypersensitivity through MAPK and NF-κB activation. SIGNIFICANCE STATEMENT: Using a multi-disciplinary approach, we have characterized the molecular mechanisms underpinning 7α,25-OHC/GPR183-induced hypersensitivity in mice. Intrathecal injections of the GPR183 agonist 7α,25-OHC induce behavioral hypersensitivity, and these effects are blocked by the selective GPR183 antagonist SAE-14. We found that 7α,25-OHC-induced allodynia is dependent on MAPK and NF-κB signaling pathways and results in an increase in pro-inflammatory cytokine expression. This study provides a first insight into how GPR183 signaling in the spinal cord is pronociceptive." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C...

    October 2022 Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C isozymes are involved in mGlu5a receptor internalization "The internalization of G protein-coupled receptors (GPCRs) can be regulated by PKC. However, most tools available to study the contribution of PKC isozymes have considerable limitations, including a lack of selectivity. In this study, we generated and characterized human embryonic kidney 293A (HEK293A) cell lines devoid of conventional or novel PKC isozymes (ΔcPKC and ΔnPKC) and employ these to investigate the contribution of PKC isozymes in the internalization of the metabotropic glutamate receptor 5 (mGlu5). Direct activation of PKC and mutation of rat mGlu5a Ser901, a PKC-dependent phosphorylation site in the receptor C-tail, both showed that PKC isozymes facilitate approximately 40% of the receptor internalization. Nonetheless, we determined that mGlu5a internalization was not altered upon the loss of cPKCs or nPKCs. This indicates that isozymes from both classes are involved, compensate for the absence of the other class, and thus fulfill dispensable functions. Additionally, using the Gαq/11 inhibitor YM-254890, GPCR kinase 2 and 3 (GRK2 and GRK3) KO cells, and a receptor containing a mutated putative adaptor protein complex 2 (AP-2) interaction motif, we demonstrate that internalization of rat mGlu5a is mediated by Gαq/11 proteins (77% of the response), GRK2 (27%), and AP-2 (29%), but not GRK3. Our PKC KO cell lines expand the repertoire of KO HEK293A cell lines available to research GPCR pharmacology. Moreover, since pharmacological tools to study PKC isozymes generally lack specificity and/or potency, we present the PKC KO cell lines as more specific research tools to investigate PKC-mediated aspects of cell biology." Read more at the source #DrGPCR #GPCR #IndustryNews

  • N-Acyl Amides from Neisseria meningitidis and Their Role in Sphingosine Receptor Signaling

    October 2022 "Neisseria meningitidis is a Gram-negative opportunistic pathogen that is responsible for causing human diseases with high mortality, such as septicemia and meningitis. The molecular mechanisms N. meningitidis employ to manipulate the immune system, translocate the mucosal and blood-brain barriers, and exert virulence are largely unknown. Human-associated bacteria encode a variety of bioactive small molecules with growing evidence for N-acyl amides as being important signaling molecules. However, only a small fraction of these metabolites has been identified from the human microbiota thus far. Here, we heterologously expressed an N-acyltransferase encoded in the obligate human pathogen N. meningitidis and identified 30 N-acyl amides with representative members serving as agonists of the G-protein coupled receptor (GPCR) S1PR4. During this process, we also characterized two mammalian N-acyl amides derived from the bovine medium. Both groups of metabolites suppress anti-inflammatory interleukin-10 signaling in human macrophage cell types, but they also suppress the pro-inflammatory interleukin-17A+ population in TH 17-differentiated CD4+ T cells." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Function and structure of bradykinin receptor 2 for drug discovery

    October 2022 "Type 2 bradykinin receptor (B2R) is an essential G protein-coupled receptor (GPCR) that regulates the cardiovascular system as a vasodepressor. Dysfunction of B2R is also closely related to cancers and hereditary angioedema (HAE). Although several B2R agonists and antagonists have been developed, icatibant is the only B2R antagonist clinically used for treating HAE. The recently determined structures of B2R have provided molecular insights into the functions and regulation of B2R, which shed light on structure-based drug design for the treatment of B2R-related diseases. In this review, we summarize the structure and function of B2R in relation to drug discovery and discuss future research directions to elucidate the remaining unknown functions of B2R dimerization." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Specific Functions of Melanocortin 3 Receptor (MC3R)

    October 2022 "Melanocortin 3 receptor (MC3R) is a G-protein coupled receptor (GPCR) that is defined as a regulator of appetite/hunger balance mechanisms mostly up to date. In addition to its function about weight gain and appetite control mechanisms of MC3R, recent studies showed that MC3R controls growth, puberty, and circadian rhythms as well. Despite the drastic effects of the MC3R deficiency in humans and other mammals, its cellular mechanisms are still under investigation. In this review paper, we aimed to point out the importance of the MC3R regulations in three main concepts: 1) its impact on weight and appetite control, 2) the control of growth, puberty, and circadian rhythm, and, 3) its protein-protein interactions and cellular mechanisms." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Viral G Protein-Coupled Receptors Encoded by β- and γ-Herpesviruses

    October 2022 "Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein-coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74, ORF74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections." Read more at the source #DrGPCR #GPCR #IndustryNews

  • The complicated lives of GPCRs in cardiac fibroblasts

    October 2022 "The role of different G protein-coupled receptors (GPCRs) in the cardiovascular system is well understood in cardiomyocytes and vascular smooth muscle cells (VSMCs). In the former, stimulation of Gs-coupled receptors leads to increases in contractility, whereas stimulation of Gq-coupled receptors modulates cellular survival and hypertrophic responses. In VSMCs, stimulation of GPCRs also modulates contractile and cell growth phenotypes. Here, we will focus on the relatively less well-studied effects of GPCRs in cardiac fibroblasts, focusing on key signaling events involved in the activation and differentiation of these cells. We also review the hierarchy of signaling events driving the fibrotic response and the communications between fibroblasts and other cells in the heart. We discuss how such events may be distinct depending on where the GPCRs and their associated signaling machinery are localized in these cells with an emphasis on nuclear membrane-localized receptors. Finally, we explore what such connections between the cell surface and nuclear GPCR signaling might mean for cardiac fibrosis." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Differences across sexes on head-twitch behavior and 5-HT2A receptor signaling in C57BL/6J mice

    October 2022 "Psychedelics, also known as classical hallucinogens, affect processes related to perception, cognition and sensory processing mostly via the serotonin 5-HT2A receptor (5-HT2AR). This class of psychoactive substances, which includes lysergic acid diethylamide (LSD), psilocybin, mescaline and the substituted amphetamine 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), is receiving renewed attention for their potential therapeutic properties as it relates to psychiatric conditions such as depression and substance use disorders. Current studies focused on the potentially clinical effects of psychedelics on human subjects tend to exclude sex as a biological variable. Much of the understanding of psychedelic pharmacology is derived from rodent models, but most of this preclinical research has only focused on male mice. Here we tested the effects of DOI on head-twitch behavior (HTR) - a mouse behavioral proxy of human psychedelic potential - in male and female mice. DOI elicited more HTR in female as compared to male C57BL/6J mice, a sex-specific exacerbated behavior that was not observed in 129S6/SvEv animals. Volinanserin (or M100907) - a 5-HT2AR antagonist - fully prevented DOI-induced HTR in male and female C57BL/6J mice. Accumulation of inositol monophosphate (IP1) in the frontal cortex upon DOI administration showed no sex-related effect in C57BL/6J mice. However, the pharmacokinetic properties of DOI differed among sexes - brain and plasma concentrations of DOI were lower 30 and 60 min after drug administration in female as compared to male C57BL/6J mice. Together, these results suggest strain-dependent and sex-related differences in the behavioral and pharmacokinetic profiles of the 5-HT2AR agonist DOI in C57BL/6J mice, and support the importance of studying sex as a biological variable in preclinical psychedelic research." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Adrenal G Protein-Coupled Receptors and the Failing Heart: A Long-distance, Yet Intimate Affair

    October 2022 "Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as β-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the β-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland." Read more at the source #DrGPCR #GPCR #IndustryNews

  • GB83, an Agonist of PAR2 with a Unique Mechanism of Action Distinct from Trypsin and PAR2-AP

    October 2022 "Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor (GPCR) activated by proteolytic cleavage of its N-terminal domain. Once activated, PAR2 is rapidly desensitized and internalized by phosphorylation and β-arrestin recruitment. Due to its irreversible activation mechanism, some agonists that rapidly desensitized PAR2 have been misconceived as antagonists, and this has impeded a better understanding of the pathophysiological role of PAR2. In the present study, we found that GB83, initially identified as a PAR2 antagonist, is a bona fide agonist of PAR2 that induces unique cellular signaling, distinct from trypsin and PAR2-activating peptide (AP). Activation of PAR2 by GB83 markedly elicited an increase in intracellular calcium levels and phosphorylation of MAPKs, but in a delayed and sustained manner compared to the rapid and transient signals induced by trypsin and PAR2-AP. Interestingly, unlike PAR2-AP, GB83 and trypsin induced sustained receptor endocytosis and PAR2 colocalization with β-arrestin. Moreover, the recovery of the localization and function of PAR2 was significantly delayed after stimulation by GB83, which may be the reason why GB83 is recognized as an antagonist of PAR2. Our results revealed that GB83 is a bona fide agonist of PAR2 that uniquely modulates PAR2-mediated cellular signaling and is a useful pharmacological tool for studying the pathophysiological role of PAR2." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Structure-Based Discovery of Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5

    October 2022 "Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 μM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of...

    October 2022 Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors "Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-coupled receptor (GPCR) proteins are particularly interesting since they are involved in numerous pathways. This work directly compares the performance of these novel deep learning-based protein modeling methods for GPCRs with the most widely used template-based software-Modeller. We collected the experimentally determined structures of 73 GPCRs from the Protein Data Bank. The official AlphaFold repository and RoseTTAFold web service were used with default settings to predict five structures of each protein sequence. The predicted models were then aligned with the experimentally solved structures and evaluated by the root-mean-square deviation (RMSD) metric. If only looking at each program's top-scored structure, Modeller had the smallest average modeling RMSD of 2.17 Å, which is better than AlphaFold's 5.53 Å and RoseTTAFold's 6.28 Å, probably since Modeller already included many known structures as templates. However, the NN-based methods (AlphaFold and RoseTTAFold) outperformed Modeller in 21 and 15 out of the 73 cases with the top-scored model, respectively, where no good templates were available for Modeller. The larger RMSD values generated by the NN-based methods were primarily due to the differences in loop prediction compared to the crystal structures." Read more at the source #DrGPCR #GPCR #IndustryNews

  • The Adhesion GPCR VLGR1/ADGRV1 Regulates the Ca2+ Homeostasis at Mitochondria-Associated ER Membrane

    October 2022 "The very large G protein-coupled receptor (VLGR1, ADGRV1) is the largest member of the adhesion GPCR family. Mutations in VLGR1 have been associated with the human Usher syndrome (USH), the most common form of inherited deaf-blindness as well as childhood absence epilepsy. VLGR1 was previously found as membrane-membrane adhesion complexes and focal adhesions. Affinity proteomics revealed that in the interactome of VLGR1, molecules are enriched that are associated with both the ER and mitochondria, as well as mitochondria-associated ER membranes (MAMs), a compartment at the contact sites of both organelles. We confirmed the interaction of VLGR1 with key proteins of MAMs by pull-down assays in vitro complemented by in situ proximity ligation assays in cells. Immunocytochemistry by light and electron microscopy demonstrated the localization of VLGR1 in MAMs. The absence of VLGR1 in tissues and cells derived from VLGR1-deficient mouse models resulted in alterations in the MAM architecture and in the dysregulation of the Ca2+ transient from ER to mitochondria. Our data demonstrate the molecular and functional interaction of VLGR1 with components in MAMs and point to an essential role of VLGR1 in the regulation of Ca2+ homeostasis, one of the key functions of MAMs." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Mechanism of enhanced sensitivity of mutated β-adrenergic-like octopamine receptor to amitraz in...

    October 2022 Mechanism of enhanced sensitivity of mutated β-adrenergic-like octopamine receptor to amitraz in honeybee Apis mellifera: An insight from MD simulations "Background: Amitraz is one of the critical acaricides/insecticides for effective control of pest infestation of Varroa destructor mite, a devastating parasite of Apis mellifera, because of its low toxicity to honeybees. Previous assays verified that a typical G protein-coupled receptor, β-adrenergic-like octopamine receptor (Octβ2R), is the unique target of amitraz, but the honeybee Octβ2R resists to amitraz. However, the underlying molecular mechanism of the enhanced sensitivity or toxicity of amitraz to mutated honeybee Octβ2RE208V/I335T/I350V is not fully understood. Here, molecular dynamics simulations are employed to explore the implied mechanism of the enhanced sensitivity to amitraz in mutant honeybee Octβ2R." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Focusing on the role of secretin/adhesion (Class B) G protein-coupled receptors in placental...

    October 2022 Focusing on the role of secretin/adhesion (Class B) G protein-coupled receptors in placental development and preeclampsia "Preeclampsia, a clinical syndrome mainly characterized by hypertension and proteinuria, with a worldwide incidence of 3–8% and high maternal mortality, is a risk factor highly associated with maternal and offspring cardiovascular disease. However, the etiology and pathogenesis of preeclampsia are complicated and have not been fully elucidated. Obesity, immunological diseases and endocrine metabolic diseases are high-risk factors for the development of preeclampsia. Effective methods to treat preeclampsia are lacking, and termination of pregnancy remains the only curative treatment for preeclampsia. The pathogenesis of preeclampsia include poor placentation, uteroplacental malperfusion, oxidative stress, endoplasmic reticulum stress, dysregulated immune tolerance, vascular inflammation and endothelial cell dysfunction. The notion that placenta is the core factor in the pathogenesis of preeclampsia is still prevailing. G protein-coupled receptors, the largest family of membrane proteins in eukaryotes and the largest drug target family to date, exhibit diversity in structure and function. Among them, the secretin/adhesion (Class B) G protein-coupled receptors are essential drug targets for human diseases, such as endocrine diseases and cardiometabolic diseases. Given the great value of the secretin/adhesion (Class B) G protein-coupled receptors in the regulation of cardiovascular system function and the drug target exploration, we summarize the role of these receptors in placental development and preeclampsia, and outlined the relevant pathological mechanisms, thereby providing potential drug targets for preeclampsia treatment." Read more at the source #DrGPCR #GPCR #IndustryNews

  • Enhanced membrane binding of oncogenic G protein αqQ209L confers resistance to inhibitor YM-254890

    October 2022 "Heterotrimeric G proteins couple activated G protein-coupled receptors (GPCR) to intracellular signaling pathways. They can also function independently of GPCR activation upon acquiring mutations that prevent GTPase activity and result in constitutive signaling, as occurs with the αqQ209L mutation in uveal melanoma. YM-254890 (YM) can inhibit signaling by both GPCR-activated wild type αq and GPCR-independent αqQ209L. Although YM inhibits wild type αq by binding to αq-GDP and preventing GDP/GTP exchange, the mechanism of YM inhibition of cellular αqQ209L remains to be fully understood. Here, we show that YM promotes a subcellular redistribution of αqQ209L from the plasma membrane (PM) to the cytoplasm. To test if this loss of PM localization could contribute to the mechanism of inhibition of αqQ209L by YM, we developed and examined N-terminal mutants of αqQ209L, termed PM-restricted αqQ209L, in which the addition of membrane-binding motifs enhanced PM localization and prevented YM-promoted redistribution. Treatment of cells with YM failed to inhibit signaling by these PM-restricted αqQ209L. Additionally, pull-down experiments demonstrated that YM promotes similar conformational changes in both αqQ209L and PM-restricted αqQ209L, resulting in increased binding to βγ and decreased binding to regulator RGS2, and effectors p63RhoGEF-DH/PH and phospholipase C-β. GPCR-dependent signaling by PM-restricted wild type αq is strongly inhibited by YM, demonstrating that resistance to YM inhibition by membrane-binding mutants is specific to constitutively active αqQ209L. Together, these results indicate that changes in membrane binding impact the ability of YM to inhibit αqQ209L and suggest that YM contributes to inhibition of αqQ209L by promoting its relocalization." Read more at the source #DrGPCR #GPCR #IndustryNews

  • N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 ...

    October 2022 N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction "Background and purpose: To fully elucidate the regulatory role of the GLP-2 system in the gut and the bones, potent and selective GLP-2 receptor (GLP-2R) antagonists are needed. Searching for antagonist activity, we performed systematic N-terminal truncations of human GLP-2(1-33). Experimental approach: COS-7 cells were transfected with the human GLP-2R and assessed for cAMP accumulation or competition binding using 125 I-GLP-2(1-33)[M10Y]. To examine selectivity, COS-7 cells expressing human GLP-1 or GIP receptors were assessed for cAMP accumulation." Read more at the source #DrGPCR #GPCR #IndustryNews

bottom of page